Synthesis and structures of paramagnetic binuclear (η^{8}-1,4-bis(trimethylsilyl)cyclooctatetraenide)titanium(III) chlorides

Michal Horáček ${ }^{\text {a }}$, Volkmar Kupfer ${ }^{\text {b }}$, Ulf Thewalt ${ }^{\text {b }}$, Miroslav Polášek ${ }^{\text {a }}$, Karel Mach ${ }^{\text {a,* }}$
${ }^{\text {a }}$ J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague 8, Czech Republic
${ }^{\mathrm{b}}$ Sektion für Röntgen und Elektronenbeugung, Universität Ulm, D-89069 Ulm, Germany

Received 11 November 1998

Abstract

The reaction between equimolar quantities of $\mathrm{TiCl}_{3}(\mathrm{THF})_{3}$ and 1,4 -bis(trimethylsilyl)cyclooctatetraene dianion (COT") yields a mixture of $\left(\mathrm{COT}^{\prime \prime}\right)_{2} \mathrm{Ti}(\mathbf{1}),\left[\left(\mathrm{COT}^{\prime \prime}\right) \mathrm{Ti}\right]_{2}(\mu-\mathrm{Cl})_{3}(\mathbf{2})$ and $\left[\left(\mathrm{COT}^{\prime \prime}\right) \mathrm{Ti}(\mu-\mathrm{Cl})\right]_{2}(\mathrm{THF})(\mathbf{3})$. Crystalline $\mathbf{2}$ and $\mathbf{3}$ were isolated on the basis of different solubility in hexane. Their X-ray diffraction analyses revealed dimeric structures linked by chlorine bridges. In 3, only one of the Ti atoms coordinates one molecule of THF. The mixed-valency $\mathrm{Ti}(\mathrm{III}) / \mathrm{Ti}(\mathrm{IV})$ compound 2 shows an ESR spectrum typical of mononuclear ($\left.\mathrm{COT}^{\prime \prime}\right) \mathrm{Ti}(\mathrm{III})$ complexes. The ESR spectra of 3 in toluene or 2-methyltetrahydrofuran glasses prove the triplet state of coupled $\mathrm{Ti}(\mathrm{III}) \mathrm{d}^{1}$ electrons. © 1999 Elsevier Science S.A. All rights reserved.

Keywords: Titanium; Bis(trimethylsilyl)cyclooctatetraene dianion; Binuclear complexes; Chloride bridges; Crystal structure; ESR spectra

1. Introduction

An easy and cheap access to 1,4-bis(trimethylsilyl)cyclooctatetraene dianion (COT") [1] opened its wide application in synthesis of new complexes of early transition metals and lanthanides [2] although the electronic and steric effects of the SiMe_{3} groups are not perspicuous. From the practical point of view, COT" complexes are generally more soluble than analogous cyclooctatetraene (COT) complexes. In the crystal lattice, the $\mathrm{COT}^{\prime \prime}$ ligand is, usually at variance with COT, firmly fixed, which is essential for good quality X-ray crystal structure determination. From the chemical point of view, the comparison is available in early transition metal series where complexes of the $\left(\mathrm{COT}^{\prime \prime}\right)_{2} \mathrm{M}$ and $\left(\mathrm{COT}^{\prime \prime} \mathrm{MCl}_{2}\right.$ type are available for both the ligands. The $\left(\mathrm{COT}^{\prime \prime}\right)_{2} \mathrm{M}(\mathrm{M}=\mathrm{Ti}[3 \mathrm{a}], \mathrm{Zr}[3 \mathrm{a}]$ and Hf

[^0][3b]) complexes as well as the $(\mathrm{COT})_{2} \mathrm{M}(\mathrm{M}=\mathrm{Ti}[4 \mathrm{a}-$ $\mathrm{d}], \mathrm{Zr}[3 \mathrm{~b}, 4 \mathrm{e}, \mathrm{f}]$, and $\mathrm{Hf}[4 \mathrm{~g}, \mathrm{~h}]$) complexes possess η^{8} and η^{4}-coordinated COT" ligands. Of the (COT) MCl_{2} complexes, (COT) $\mathrm{ZrCl}_{2}[5]$ and $(\mathrm{COT}) \mathrm{HfCl}_{2}[4 \mathrm{~g}, 5]$ are easily obtainable by the synproportionation of $(\mathrm{COT})_{2} \mathrm{M}$ and MCl_{4} compounds. They form either monomeric THF solvates (COT) $\mathrm{MCl}_{2}(\mathrm{THF})$ or, in the absence of THF, the $[(\mathrm{COT}) \mathrm{MCl}(\mu-\mathrm{Cl})]_{2}$ dimers [5]. Such a dimer is analogously obtained from $\left(\mathrm{COT}^{\prime \prime}\right)_{2} \mathrm{Zr}$ and $\mathrm{ZrCl}_{4}[5]$. The $[(\mathrm{COT}) \mathrm{ZrCl}(\mu-\mathrm{Cl})]_{2}$ compound has been used as a starting material for syntheses of borohydride complexes [6a] and bis(trimethylsilyl)methyl complexes [6b] which both showed interesting rearrangements. The titanium compounds (COT) MCl_{2} and $\left(\mathrm{COT}^{\prime \prime}\right) \mathrm{TiCl}_{2}$ are not known. Instead, the $\mathrm{Ti}(\mathrm{III})$ compounds $[(\mathrm{COT}) \mathrm{TiCl}]_{4}$ or $[(\mathrm{COT}) \mathrm{TiCl}(\mathrm{THF})]_{2}[7]$ have been prepared and used to synthesize (COT)Ti(III) allyl derivatives [8] or the $\mathrm{Ti}($ II $)$ complex $[(\mathrm{COT}) \mathrm{Ti}]_{2}\left[\mu-\eta^{2}: \eta^{2}-\right.$ $\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CSiMe}_{3}$] [9]. Analogous ($\left.\mathrm{COT}^{\prime \prime}\right) \mathrm{TiCl}$ compounds are not yet known, although examples of dimeric lanthanide complexes of this type have been described [10].

Here we report the synthesis, crystal structures and EPR spectra of two dimeric (COT")Ti(III) chlorides.

2. Experimental

2.1. General data and methods

Synthesis, purification and crystallization procedures and measurements of EPR and UV-NIR spectra in solutions were carried out in evacuated all-sealed glass devices equipped with magnetically breakable seals. A combined device equipped with a pair of quartz cuvettes (Hellma, $d=1 \mathrm{~cm}$ and 1 mm) and a quartz ESR tube was used for UV-NIR and ESR measurements. ESR spectra were measured on an ERS-220 spectrometer (Centre for Production of Scientific Instruments, Academy of Sciences of GDR, Berlin, Germany) operated by a CU-1 unit (Magnettech, Berlin, Germany) in the X-band. g-Values were determined using an Mn^{2+} ($M_{\mathrm{I}}=-1 / 2$ line) standard at $g=1.9860$. The concentrations of the paramagnetic compounds were determined by double integration of the first derivative spectra. A variable temperature unit STT-3 was used for measurements in the range $102-296 \mathrm{~K}$. NMR spectra were obtained on a Varian UNITY Inova 400 spectrometer $\left({ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}\right.$-, and ${ }^{29} \mathrm{Si}-399.95,100.58$, and 79.46 MHz , respectively) in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $25^{\circ} \mathrm{C}$. Chemical shifts (given in the δ scale) were referenced to the solvent signal ($\delta_{\mathrm{H}} 7.15 \mathrm{ppm}, \delta_{\mathrm{C}} 128.0 \mathrm{ppm}$) and to a solution of SiMe_{4} in $\mathrm{C}_{6} \mathrm{D}_{6}$ as the external reference. UV-NIR absorption spectra were taken on a Varian Cary 17D in the range $280-2200 \mathrm{~nm}$. EI MS spectra were measured on a VG-7070E double-focusing mass spectrometer ($70 \mathrm{eV}, 50 \mu \AA, 50-200^{\circ} \mathrm{C}$). Samples in capillaries were opened and inserted into the direct inlet under argon. The spectra are represented by the peaks of relative abundance not below 5% and by important peaks of lower intensity. IR spectra were registered on a Mattson Galaxy 2020 and Specord 75 IR (Carl Zeiss, Jena, FRG). KBr pellets were prepared from estimated amounts of solid samples in a glovebox under purified nitrogen and were measured under nitrogen atmosphere in a closed cell.

2.2. Chemicals

The solvents THF, 2-methyltetrahydrofuran (MTHF), hexane and toluene were purified by conventional methods, dried by refluxing over LiAlH_{4} and stored as solutions of dimeric titanocene $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ti}(\mu-\mathrm{H})\right]_{2} \quad$ [11]. $\quad 5,8-\mathrm{Bis}($ trimethyl-silyl)-cycloocta-1,3,6-triene was prepared from 1,5-cyclooctadiene as described elsewhere [1b]. TiCl_{4} (enzymes intern.) was degassed, refluxed with copper wire for 2 h , and distributed into ampoules by vacuum distillation.
n-Butyllithium (BuLi) in hexane (1.6 M) (Aldrich) was handled by syringe technique under argon. TiCl_{3} was obtained by adding BuLi in hexane ($1.6 \mathrm{M}, 6.0 \mathrm{ml}$) to $\mathrm{TiCl}_{4}(1.0 \mathrm{ml}, 9.0 \mathrm{mmol})$ in 50 ml of THF under stirring. The mixture was refluxed for 30 min and the resulting brown precipitate was washed several times with THF and finally recrystallized from hot THF to give $2.4 \mathrm{~g}(6.5 \mathrm{mmol})$ of crystalline pale blue $\mathrm{TiCl}_{3}(\mathrm{THF})_{3}$.

2.3. Reaction of [1,4-bis(trimethylsilyl)cyclooctatetraene $]^{2-}\left[2 \mathrm{Li}^{+}\right]$with $\mathrm{TiCl}_{3}\left(\mathrm{THF}_{3}\right.$

A total of 2.25 g of 1,4-bis(trimethylsilyl)cyclooctatriene (9 mmol) was dissolved in 50 ml of THF, and n-BuLi in hexane ($1.6 \mathrm{M}, 11.5 \mathrm{ml}$) was added. After stirring for 4 h at room temperature (r.t.) a golden yellow solution of $\left(\mathrm{COT}^{\prime \prime}\right)^{2-}\left(2 \mathrm{Li}^{+}\right)$was obtained. This was slowly added to a stirred suspension of $\mathrm{TiCl}_{3}(\mathrm{THF})_{3}(3.3 \mathrm{~g}, 9.0 \mathrm{mmol})$ in 40 ml of THF. Finally, the mixture was refluxed for 10 h to give a dark brown-red solution. The solvents were evaporated and a brown-red residue was successively extracted by hexane. A slow extraction by condensing hexane vapour afforded a brown-red solution of $\mathbf{1}$, which was separated. The subsequent extraction by hexane yielded moderately soluble yellow crystalline 2 . The solid residue, nearly insoluble in hexane, was extracted by toluene to give a green solution of $\mathbf{3}$. Compound $\mathbf{1}$ was isolated by evaporating hexane from the most soluble fraction as a reddish-brown oil which according to ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra was identical with $\mathrm{COT}_{2}^{\prime \prime \mathrm{Ti}}[3 \mathrm{a}]$. A paramagnetic compound 2 was identified by single crystal X-ray analysis to be $\left(\mathrm{COT}^{\prime \prime} \mathrm{Ti}\right)_{2}\left(\mu-\mathrm{Cl}_{3}\right)_{3}$. A paramagnetic compound $\mathbf{3}$ crystallized from concentrated toluene solution as aggregates of pale green crystals. Its composition as $\left[\mathrm{COT}^{\prime \prime} \mathrm{Ti}(\mu-\mathrm{Cl})\right]_{2}(\mathrm{THF})$ follows from the X-ray crystal structure determination.
$\left[1,4-\left(\mathrm{SiMe}_{3}\right)_{2} \mathrm{C}_{8} \mathrm{H}_{6}\right]_{2} \mathrm{Ti}(\mathbf{1})$. Yield $0.73 \mathrm{~g}(15 \%) .{ }^{1} \mathrm{H}-$ NMR: $\delta 0.36$ (s, $18 \mathrm{H}, 2 \times \mathrm{SiMe}_{3}$), 0.89 (s, $18 \mathrm{H}, 2 \times$ $\left.\mathrm{SiMe}_{3}\right), 6.02(\mathrm{~m}, 2 \mathrm{H}), 6.21(\mathrm{~m}, 2 \mathrm{H}), 6.49(\mathrm{~m}, 2 \mathrm{H}), 6,63$ $(\mathrm{s}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 2 \mathrm{H}), 7.00(\mathrm{~m}, 2 \mathrm{H})$ all CH of ring. ${ }^{13} \mathrm{C}$-NMR: $\delta 0.43\left(\mathrm{~s}, 2 \times \mathrm{SiMe}_{3}\right), 0.89\left(\mathrm{~s}, 2 \times \mathrm{SiMe}_{3}\right)$, 100.4 (s, 2CH), 102.3 (s, 2CH), 103.9 (s, 2CH), 108.0 (s , 2 CSi), 112.2 ($\mathrm{s}, 2 \mathrm{CH}$), 112.4 ($\mathrm{s}, 2 \mathrm{CH}$), 114.2 ($\mathrm{s}, 2 \mathrm{CH}$), 121.0 (s, 2CSi). EI MS (direct inlet $70 \mathrm{eV}, 145^{\circ} \mathrm{C} ; m / z$ (\%)): $544\left(\mathrm{M}^{+} \cdot, 5\right), 471(6), 447(8), 446(16), 298(13)$, 297(23), 296(67), 295(10), 294(8), 248(5), 160(19), 145(12), 135((7), 74(8), 73(100), 45(13). (cf. Ref. [3a]).
$\left\{\left[\eta^{8}-1,4-\left(\mathrm{SiMe}_{3}\right)_{2} \mathrm{C}_{8} \mathrm{H}_{6}\right] \mathrm{Ti}\right\}_{2}(\mu-\mathrm{Cl})_{3}$ (2). Yield 0.94 g (30%). EI MS (direct inlet $70 \mathrm{eV}, 70-230^{\circ} \mathrm{C}$): dec., ions of $\mathrm{COT}^{\prime \prime},\left(\mathrm{COT}^{\prime \prime \mathrm{TiCl}}\right)_{2}, \mathrm{COT}^{\prime \prime} \mathrm{TiCl}, \mathrm{COT}^{\prime \prime} \mathrm{TiCl}_{2}$ and non identified $m / z 535$ and 437 and others. EPR (toluene, $22^{\circ} \mathrm{C}$): single line $g_{\text {iso }}=1.987, \Delta H=0.7 \mathrm{mT}$, poorly discernible $a_{\mathrm{Ti}}=0.72 \mathrm{mT}$; (toluene, $-140^{\circ} \mathrm{C}: g_{\|}=$
2.003, $g_{\perp}=1.981, g_{\mathrm{av}}=1.988$ (see Fig. 1). UV-NIR (hexane, nm): $395 \sim 440(\mathrm{sh})>2210$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3040 (w), 2949 (m), 2901 (w), 1498 (w), 1475 (w), 1406 (w), 1354 (w), 1249 (s), 1035 (m), 989 (w), 900 (m), 837 (vs), 779 (w), 760 (m), 690 (w), 634 (m). \{[$\eta^{8}-1,4-$ $\left.\left.\left(\mathrm{SiMe}_{3}\right)_{2} \mathrm{C}_{8} \mathrm{H}_{6}\right] \mathrm{Ti}(\mu-\mathrm{Cl})\right\}_{2}(\mathrm{THF})$ (3). Yield $1.65 \mathrm{~g}(50 \%)$. EI MS (direct inlet, $70 \mathrm{eV}, 60-220^{\circ} \mathrm{C}$): liberation of mainly THF (m/z 72); ($230^{\circ} \mathrm{C} ; \mathrm{m} / \mathrm{z}(\%): 662([M-$ THF $\left.]^{+\bullet}, 0.2\right), 334(6), 333(20), 332(15), 331([(M-\mathrm{THF}) /$ $\left.2]^{+}, 40\right), 248\left(\left[\mathrm{COT}^{\prime \prime}\right]^{+}, 13\right), 207(8), 161(9), 160(48)$, $159(11), 145(32), 135(24), 95(6), 93(18), 83(8), 75(9)$, 74(22), 73(100), 59(10), 45(37), 43(17). UV-NIR (hexane, nm): $410(\mathrm{sh})$; absorption increases from 1000 nm to shorter wavelengths. IR (KBr, cm^{-1}): 3038 (w), 2953 (m), 2895 (w), 1593 (vw), 1473 (w), 1446 (w), 1408 (w), 1354 (w), 1319 (w), 1248 (s), 1037 (m), 991 (w), 910 (w), 837 (vs), 787 (w), 761 (m), 688 (m), 638 (m), 543 (w). ESPR (toluene, $22^{\circ} \mathrm{C}$): $g=1.96, \Delta H=21 \mathrm{mT}$, a very broad line of low intensity further broadens with lowering of the temperature; (toluene, $-140^{\circ} \mathrm{C}$): $D=$ $0.04216 \mathrm{~cm}^{-1}, \quad E=0.00232 \mathrm{~cm}^{-1}, \quad g_{z}=1.985$, $g_{y}=1.951, g_{x}=1.972, g_{\mathrm{av}}=1.969$ (a triplet state of rhombic symmetry); (MTHF, $-140^{\circ} \mathrm{C}$): the triplet spectrum shows slightly doubled z - and x-features. It can be interpreted as the presence of two very similar species I and $I I$. They have the same g-tensor $g_{z}=$ $1.985, g_{y}=1.945, g_{x}=1.972, g_{\text {av }}=1.967, I D=0.04100$ $\mathrm{cm}^{-1}, E=0.00222 \mathrm{~cm}^{-1}, I I D=0.03974 \mathrm{~cm}^{-1}, E=$ $0.00264 \mathrm{~cm}^{-1}$.

Complex 3 after high vacuum at $100^{\circ} \mathrm{C}-\mathrm{ESPR}$ (toluene, $-140^{\circ} \mathrm{C}$): $D=0.04711 \mathrm{~cm}^{-1}, E=0, g_{\|}=$ $1.995, g_{\perp}=1.955, g_{\text {av }}=1.968$ (broad lines, triplet state of axial symmetry).

Fig. 1. ESR spectrum of 2 in frozen toluene glass at $-140^{\circ} \mathrm{C}$.

2.4. Alternative preparation of $\mathbf{2}$

A total of $3.27 \mathrm{~g}(6 \mathrm{mmol})$ of $\mathrm{COT}_{2}^{\prime \prime} \mathrm{Ti}$ was dissolved in 40 ml of hexane and $0.5 \mathrm{ml}(4.5 \mathrm{mmol})$ of TiCl_{4} was added. A yellow crystalline material gradually precipitated from a brown solution. The mixture was stirred for 3 h at r.t. Then, the brown solution of largely $\mathrm{COT}_{2}^{\prime \prime} \mathrm{Ti}$ was removed and the yellow crystalline solid was washed with hexane. Crystallization from warm toluene solution afforded yellow crystals of $\mathbf{2}$. Yield 3.1 $\mathrm{g}\left(100 \%\right.$ on $\left.\mathrm{TiCl}_{4}\right)$.

2.5. Crystallography

A dark-yellow almost cube-shaped fragment of 2 and a pale green irregular fragment of 3 were fixed in Lindenmann glass capillaries under purified nitrogen in a Labmaster 130 (mBraun) glovebox. The capillaries were closed with sealing wax. The X-ray measurements were carried out at r.t. The diffraction data were collected on a STOE IPDS Imaging Plate System using graphite-monochromated $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation $\quad(\lambda=$ $0.71069 \AA$). The structures were solved using the Patterson method [12]. The refinement was performed with full matrix least-squares method based on F^{2} (SHELXL93 [13]). The non-hydrogen atoms were refined anisotropically. The hydrogen atoms were included in calculated positions. One trimethylsilyl group in $\mathbf{3}$ was strongly disordered. Nevertheless, its methyl C atoms were refined anisotropically because the directions of the long axes of their vibration ellipsoids are consistent with the rotation of the SiMe_{3} group around the $\mathrm{C}_{\text {ring }}{ }^{-}$ Si axis. Crystal data, details of data collection and refinement are given in Table 1. All atomic coordinates, thermal parameters, bond lengths and angles for 2 and 3 are available together with further details concerning the crystal structure analyses upon request from the Fachinformationszentrum Karlsruhe, D-76344 Eggen-stein-Leopoldhafen, by quoting the deposition numbers CSD-410382 (compound 2) and CSD-410383 (compound 3).

3. Results and discussion

The synthetic approach to $\left(\mathrm{COT}^{\prime \prime}\right) \mathrm{TiCl}$ type compounds follows the procedure developed for obtaining $[(\mathrm{COT}) \mathrm{TiCl}]_{4}$ or $[(\mathrm{COT}) \mathrm{TiCl}(\mathrm{THF})]_{2}$ [7]. It should consist of a stoichiometric reaction between $\mathrm{TiCl}_{3}(\mathrm{THF})_{3}$ and the alkali metal salt of $\mathrm{COT}^{\prime \prime}$ (Eq. (1)).
$\mathrm{TiCl}_{3}(\mathrm{THF})_{3}+\left(\mathrm{COT}^{\prime \prime}\right)^{2-}\left(2 \mathrm{Li}^{+}\right) \xrightarrow{\mathrm{THF}}\left(\mathrm{COT}^{\prime \prime}\right) \mathrm{TiCl}$

$$
\begin{equation*}
+2 \mathrm{LiCl} \tag{1}
\end{equation*}
$$

Unfortunately, the reaction would proceed in the outlined way only if $\mathrm{TiCl}_{3}(\mathrm{THF})_{3}$ was always in excess

Table 1
Crystallographic data for 2 and 3

	2	3
Crystal data		
Chemical formula	$\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{Cl}_{3} \mathrm{Si}_{4} \mathrm{Ti}_{2}$	$\mathrm{C}_{32} \mathrm{H}_{56} \mathrm{Cl}_{2} \mathrm{OSi}_{4} \mathrm{Ti}_{2}$
Molecular weight (g mol^{-1})	699.17	735.83
Crystal system	Triclinic	Monoclinic
Space group	$P \overline{1}$ (no. 2)	$P 2_{1} / n$ (no. 14)
a (${ }_{\text {¢ }}$)	7.1945(14)	11.827(2)
b (® $_{\text {® }}$)	13.761(2)	$13.933(2)$
$c(\AA)$	18.366(4)	23.864(4)
$\alpha\left({ }^{\circ}\right)$	94.24(2)	90
$\beta\left({ }^{\circ}\right.$	93.60(2)	97.13(2)
$\gamma\left({ }^{\circ}\right)$	92.21(2)	90
$V\left(\mathrm{~A}^{3}\right)$	1808.1(6)	3902.0(12)
Z	2	4
$D_{\text {calc. }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.284	1.253
$\mu\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right)\left(\mathrm{cm}^{-1}\right)$	8.13	6.92
$F(000)$	734	1560
Crystal size (mm^{3})	$0.51 \times 0.62 \times 0.65$	$0.46 \times 0.62 \times 0.65$
Data collection		
T (K)	293(2)	293(2)
$\theta_{\text {min }}, \theta_{\text {max }}\left({ }^{\circ}\right)$	1.92, 24.21	1.70, 24.19
Range of $h k l$ indices	$\begin{aligned} & -7: 7,-15: 15,- \\ & 21: 20 \end{aligned}$	$\begin{aligned} & -13: 13,-15: 15, \\ & -27: 26 \end{aligned}$
Reflections collected	11617	24623
Independent reflections	5368	5954
Data/restraints/parameters	5368/0/334	5953/0/370
Goodness-of-fit on F^{2}	0.885	0.894
Final R indices $[I>2 \sigma(I)]$	$\begin{aligned} & R_{1}=0.0444 \\ & w R_{2}=0.1034 \end{aligned}$	$\begin{aligned} & R_{1}=0.0550 \\ & w R_{2}=0.1352 \end{aligned}$
R indices (all data)	$\begin{aligned} & R_{1}=0.0766 \\ & w R_{2}=0.1136 \end{aligned}$	$\begin{aligned} & R_{1}=0.0979 \\ & w R_{2}=0.1557 \end{aligned}$
Min., max. residual density	-0.424, 0.701	-0.373, 0.378

with respect to $\left(\mathrm{COT}^{\prime \prime}\right)^{2-}$. To conduct the reaction under this condition is practically impossible because $\mathrm{TiCl}_{3}(\mathrm{THF})_{3}$ is low-soluble in THF. Even very slow dropwise addition of $\left(\mathrm{COT}^{\prime \prime}\right)^{2-}\left(2 \mathrm{Li}^{+}\right)$in THF to the suspension of $\mathrm{TiCl}_{3}(\mathrm{THF})_{3}$ in THF results in a brown coloured solution. The brown product was isolated as a reddish-brown oil. The compound was identified as [1,4-($\left.\left.\mathrm{SiMe}_{3}\right)_{2} \mathrm{C}_{8} \mathrm{H}_{6}\right]_{2} \mathrm{Ti}(\mathbf{1})$ [3a] on the basis of its EI MS, ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra. Its easy formation means that the reductive electron transfer is faster than the ligand metathesis. This undesired product is easily separated from other products by careful extraction of the evaporated reaction residue with hexane since it is extremely soluble. A subsequent extensive extraction of the residue with hexane affords yellow, moderately soluble $\left\{\left[\eta^{8}-1,4-\left(\mathrm{SiMe}_{3}\right)_{2} \mathrm{C}_{8} \mathrm{H}_{6}\right] \mathrm{Ti}\right\}_{2}(\mu-\mathrm{Cl})_{3}$ (2). Finally, an exhaustive extraction by hexane for ca. 3 weeks gives pale green almost insoluble $\left\{\left[\eta^{8}-1,4-\left(\mathrm{SiMe}_{3}\right)_{2} \mathrm{C}_{8} \mathrm{H}_{6}\right] \mathrm{Ti}(\mu\right.$ $\mathrm{Cl})\}_{2}(\mathrm{THF})$ (3). Structures of $\mathbf{2}$ and $\mathbf{3}$ were established by single-crystal X-ray diffraction analysis (vide infra) to be dimers containing three and two equivalent bridg-
ing chlorine atoms, respectively. The actual products arising from reaction (1) are summarized in Scheme 1.

Spectroscopic data for $\mathbf{2}$ and $\mathbf{3}$ are compatible with their crystal structures. The presence of three bridging chlorine atoms in $\mathbf{2}$ requires one titanium atom to be $\mathrm{Ti}(\mathrm{IV})$ and the other $\mathrm{Ti}(\mathrm{III})$. The compound does not dissociate when dissolved in non-polar solvents as no colour change occurs, and the presence of a mixed-valency complex is corroborated by a strong charge-transfer band near 2000 nm . The ESR spectra of $\mathbf{2}$ in toluene solution ($\Delta H=0.7 \mathrm{mT}, a_{\mathrm{Ti}}=0.72 \mathrm{mT}$) and toluene glass are typical of mononuclear COT"Ti(III) species, showing g-tensor of axial symmetry with $g_{\|}>g_{\perp}$ (Fig. 1) (cf. Ref. [14] for (COT)TiR; $\mathrm{R}=$ cyclopentadienyl, indenyl and fluorenyl). The exchange of the Ti valency within the dimer has to be slow compared with the EPR relaxation time since no unusual line broadening is observed upon cooling. The compound dissociates on evaporation in the direct inlet of the MS spectrometer. The most natural $\left[\mathrm{COT}^{\prime \prime} \mathrm{TiCl}_{2}\right]^{+}$and $\left[\mathrm{COT}^{\prime \prime \mathrm{TiCl}}\right]^{+}$species are present among the fragment ions. The presence of a large variety of other ions whose abundances change with increasing temperature, however, indicates a complex thermolytic pattern.

Compound 3 is a dimer of two $\mathrm{Ti}(\mathrm{III}) \mathrm{COT}^{\prime \prime} \mathrm{TiCl}$ species with one of them bearing an additional THF molecule. The EI MS spectra proved that the THF molecule is released by warming to $80^{\circ} \mathrm{C}$ in vacuo. At temperatures above $170^{\circ} \mathrm{C}$ the MS spectra show the fragmentation pattern dominated by the dissociation of the dimer. The presence of $m / z 662$ indicates that at least a part of the dimeric molecules is present in the gas phase.
The ESR spectra of the frozen toluene solution (Fig. 2) prove that the $\mathrm{Ti}(\mathrm{III}) \mathrm{d}^{1}$ electrons have unpaired electron spins. The triplet state spectrum (Fig. 2, upper spectrum) shows a rhombic g-tensor resulting from the presence of asymmetrically placed THF molecule. The zero-field splitting $D=0.04216 \mathrm{~cm}^{-1}$ corresponds to the distance (R) between the unpaired electrons of 3.43 \AA if the experimental value of D is taken for calculation of R instead of the dipolar contribution $\left(D_{\mathrm{d}}\right)$ in Eq. (2) [15]. This value is by $0.22 \AA$ smaller than the crystallographic distance $\mathrm{d}(\mathrm{Ti}-\mathrm{Ti})$ (vide infra).
$D_{\mathrm{d}}=\left(-\beta^{2} / 3 R^{3}\right)\left[2 g_{z}^{2}+\left(g_{y}^{2}+g_{x}^{2}\right) / 2\right]$
This may result from neglecting the pseudodipolar contribution $\left(D_{\mathrm{e}}\right)\left(D=D_{\mathrm{d}}+D_{\mathrm{e}}\right)$. A similar discrepancy between $\mathrm{d}(\mathrm{Ti}-\mathrm{Ti})$ and R was found in $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}(\mu-\mathrm{Cl})\right]_{2}$ [15] and $\left[\left(1,3-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right)_{2} \mathrm{Ti}(\mu-\mathrm{Cl})\right]_{2}$ [16]. After warming solid 3 to $100^{\circ} \mathrm{C}$ under dynamic vacuum, the brown green residue dissolved in toluene gave a somewhat different ESR spectrum. In frozen glass at $-140^{\circ} \mathrm{C}$ the spectrum displayed broader lines corresponding to a tensor of axial symmetry and a larger zero-field splitting. This change is compatible with a release of THF

1

2

3

Scheme 1.
accompanied by shortening of the $\mathrm{Ti}-\mathrm{Ti}$ distance. The linewidth and the appearance of this spectrum is very similar to the spectra of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}(\mu-\mathrm{Cl})\right]_{2}$ [15] and $\left[\left(1,3-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right)_{2} \mathrm{Ti}(\mu-\mathrm{Cl})\right]_{2}[16]$. On the other hand, compound 3 in frozen MTHF solution gives a rhombic g-tensor with doubled z - and x-features. The D-values derived from the z-features are slightly smaller than the D-value of 3 in toluene glass. This may be accounted for the two species solvated by MTHF. The dissociation into monomeric compound, e.g.
 ESR spectra either at r.t. or at $-140^{\circ} \mathrm{C}$.

3.1. Crystal structures of $\mathbf{2}$ and $\mathbf{3}$

The common feature of molecular structures of both the molecules is an eclipsed conformation of COT" ligands.

The molecule 2 (Fig. 3), being in a general position in the triclinic unit cell, is ca. symmetrical with respect to the plane bisecting the $\mathrm{COT}^{\prime \prime}$ ligands and containing both Ti atoms and one Cl atom and to the plane defined by the three chlorine atoms. A closer inspection of molecular parameters (Table 2) shows that the two Ti atoms differ in bond lengths to the attached ligands, the bonds of $\mathrm{Ti}(1)$ being longer. The difference in the $\mathrm{Ti}-\mathrm{CE}$ (CE-centroid of the $\mathrm{COT}^{\prime \prime}$ ring) distances ranges the estimated S.D. limits, however, the $\mathrm{Ti}(1)-\mathrm{Cl}$ bonds are longer by ca. $0.02 \AA$. This may allow us to consider $\mathrm{Ti}(2)$ as a more acidic $\mathrm{Ti}(\mathrm{IV})$ and $\mathrm{Ti}(1)$ as $\mathrm{Ti}(\mathrm{III})$. The $\mathrm{Ti}-\mathrm{Ti}$ distance of $3.349(1) \AA$ is short enough for a contribution of a through-space interaction between the
titanium atoms, however, the bridging chlorine bonds are by far the main links. The eclipsed conformation of the COT" ligands is responsible for differences between the $\mathrm{Cl}(2)$ atom and two ca. equivalent $\mathrm{Cl}(1)$ and $\mathrm{Cl}(3)$ atoms. The $\mathrm{Ti}-\mathrm{Cl}(2)$ bonds are shorter by ca. $0.3 \AA$ and the $\mathrm{Ti}(1)-\mathrm{Cl}(2)-\mathrm{Ti}(2)$ angle is larger by 1.0° than the corresponding distances and angles involving the other two chlorine atoms. Moreover, the dihedral angle between planes defined by the Ti atoms and chlorine

Fig. 2. ESR spectra in frozen toluene glass at $-140^{\circ} \mathrm{C}$ of $\mathbf{3}$ (upper spectrum) and of $\mathbf{3}$ after THF was removed in dynamic vacuum (lower spectrum).

Fig. 3. ortep representation of $\mathbf{2}$ with thermal ellipsoids drawn at 30% probability level and atom numbering scheme.
atoms $(\mathrm{Cl}(1)$ and $\mathrm{Cl}(3))$ is smaller (117.7°) than the angles between these planes and the plane involving $\mathrm{Cl}(2)$ (120.9 and 121.4°). The plane of the three chlorine atoms and the least-squares planes of $\mathrm{COT}^{\prime \prime}$ rings deviate from the parallel orientation by only 0.6°. The $\mathrm{COT}^{\prime \prime}$ ligands are parallel within 1.2°.

In complex 3, the bridging chlorine atoms and the THF ligand are placed asymmetrically with respect to the eclipsed $\mathrm{COT}^{\prime \prime}$ ligands and the ring plane of THF ligand is irregularly distorted (Fig. 4). The bridging $\mathrm{Ti}-\mathrm{Cl}$ bonds are shorter for the $\mathrm{Ti}(1)$ atom (av. $2.474(2) \AA$ than those for the $\mathrm{Ti}(2)$ atom (av. 2.540(2) \AA which bears the THF ligand. The system of bridging bonds is bent because of the presence of coordinated THF molecule (Fig. 5). The dihedral angle between planes defined by the $\mathrm{Ti}(1), \mathrm{Cl}(1)$ and $\mathrm{Cl}(2)$ atoms and the $\mathrm{Ti}(2), \mathrm{Cl}(1)$ and $\mathrm{Cl}(2)$ atoms is 35.4° and the $\mathrm{Ti}-\mathrm{Cl}-\mathrm{Ti}$ angles are larger (av. 93.25°) than the $\mathrm{Cl}-\mathrm{Ti}-\mathrm{Cl}$ angles (av. 81.53°). The THF ligand is loosely coordinated to the $\mathrm{Ti}(2)$ atom with a $\mathrm{Ti}-\mathrm{O}$ bond length of $2.345(4) \AA$. Weakness of the bond follows from the comparison with the $\mathrm{Ti}-\mathrm{O}$ bond lengths in $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{TiCl}_{2}(\mathrm{THF})\right] \quad(2.065(4) ~ \AA$) and $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{TiCl}_{2}(\mathrm{THF})_{2}\right](2.241(4)$ and 2.275(4) $\AA)$ [17]. The distance of $\mathrm{O}(1)$ to $\mathrm{Ti}(1)$ of $2.976(5) \AA$ may induce only a weak coulombic interaction. The coordination of THF brings about a marginal prolongation of the $\mathrm{Ti}(2)-\mathrm{CE}(2)$ distance compared to $\mathrm{Ti}(1)-\mathrm{CE}(1)$ ($1.510(5)$ vs. $1.495(5) \AA$). The least-squares planes of the COT" rings incline each to the other by the sides not containing the SiMe_{3} groups, forming the dihedral angle of 6.1°. The COT" rings in both 2 and 3 are planar with maximum deviation of carbon atoms from the least-squares plane $0.02 \AA$, however, the bonding angles at the carbon atoms bearing SiMe_{3} groups are markedly smaller ($129.6-130.9^{\circ}$) than other ring angles (134.9-138.0 ${ }^{\circ}$) (see Table 2). The silicon atoms lie almost exactly in the least-squares planes of the COT" rings. The Ti-Ti distance of $3.647(1) \AA$ is close to the
$\mathrm{Ti}-\mathrm{Ti}$ distance in $\left(\mu-\eta^{5}: \eta^{5}-\mathrm{C}_{10} \mathrm{H}_{8}\right)\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ti}(\mu-\mathrm{Cl})\right]_{2}$ $(3.638 \AA) \quad[18]$ or the $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5-n} \mathrm{Me}_{n}\right) \mathrm{Ti}\left(\mathrm{Me}_{3}-\right.\right.$ $\left.\left.\mathrm{SiC}_{\mathrm{E}} \mathrm{CSiMe}_{3}\right)(\mu-\mathrm{Cl})\right]_{2} \quad(n=3-5)$ complexes (3.689(1)$3.743(1) \AA$ [19], shorter than the $\mathrm{Ti}-\mathrm{Ti}$ distance in titanocene chloride dimers, e.g. $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5-n^{-}}\right.\right.$ $\left.\left.\mathrm{Me}_{n}\right)_{2} \mathrm{Ti}(\mu-\mathrm{Cl})\right]_{2}(n=0-2$; $(3.915-3.968 \AA)[16,20]$, and longer than in $\left.\left[\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{Ph}\right) \mathrm{TiCl}(\mu-\mathrm{Cl})\right]_{2}(3.345(11) \AA)$

Table 2
Selected bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$ for 2 and 3

	2	3
Bond distances (A)		
$\mathrm{Ti}(1)-\mathrm{C}_{\text {ring }}(\mathrm{av})^{\text {a }}$	2.362(4)	2.365(5)
$\mathrm{Ti}(2)-\mathrm{C}_{\text {ring }}(\mathrm{av})^{\text {a }}$	2.357(4)	2.372(5)
$\mathrm{Ti}(1)-\mathrm{CE}(1)$	1.495(4)	$1.495(5)$
$\mathrm{Ti}(2)-\mathrm{CE}(2)$	1.485(4)	1.510 (5)
$\mathrm{Ti}(1)-\mathrm{Cl}(1)$	2.4985(14)	2.474(2)
$\mathrm{Ti}(1)-\mathrm{Cl}(2)$	$2.465(2)$	2.480(2)
$\mathrm{Ti}(1)-\mathrm{Cl}(3)$	2.4985(14)	-
$\mathrm{Ti}(2)-\mathrm{Cl}(1)$	2.4783(14)	2.549(2)
$\mathrm{Ti}(2)-\mathrm{Cl}(2)$	2.4452(14)	2.532(2)
$\mathrm{Ti}(2)-\mathrm{Cl}(3)$	2.481(2)	-
$\mathrm{Ti}(2)-\mathrm{O}(1)$	-	2.345(4)
$\mathrm{C}_{\text {ring }}-\mathrm{C}_{\text {ring }}(\mathrm{av})^{\text {a }}$	1.400(6)	1.403(7)
Nonbonding distances (\AA)		
$\mathrm{Ti}(1)-\mathrm{Ti}(2)$	3.3491(12)	3.647(1)
$\mathrm{Ti}(1)-\mathrm{O}(1)$	-	2.976(5)
$\mathrm{Cl}(1)-\mathrm{Cl}(2)$	3.163(2)	-
$\mathrm{Cl}(1)-\mathrm{Cl}(3)$	3.152(2)	-
$\mathrm{Cl}(2)-\mathrm{Cl}(3)$	3.173(2)	-
Bond angles $\left(^{\circ}\right.$)		
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(2)$	79.16(6)	81.76(5)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(3)$	78.21(6)	-
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{Cl}(3)$	79.47(6)	-
$\mathrm{Cl}(1)-\mathrm{Ti}(2)-\mathrm{Cl}(2)$	79.93(5)	79.30(5)
$\mathrm{Cl}(1)-\mathrm{Ti}(2)-\mathrm{Cl}(3)$	78.93(6)	-
$\mathrm{Cl}(2)-\mathrm{Ti}(2)-\mathrm{Cl}(3)$	80.19(6)	-
$\mathrm{Ti}(1)-\mathrm{Cl}(1)-\mathrm{Ti}(2)$	84.59(4)	93.12(5)
$\mathrm{Ti}(1)-\mathrm{Cl}(2)-\mathrm{Ti}(2)$	86.02(5)	93.38(6)
$\mathrm{Ti}(1)-\mathrm{Cl}(3)-\mathrm{Ti}(2)$	84.53(5)	-
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	137.9(4)	138.0(5)
$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(7)$	137.1(4)	136.6(5)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(8)$	130.1(4)	130.6(5)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	136.9(4)	136.9(5)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	130.8(4)	130.7(5)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	136.9(4)	136.3(5)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	135.5(4)	135.6(5)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	134.9(4)	135.4(5)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	137.4(4)	137.9(5)
$\mathrm{C}(9)-\mathrm{C}(16)-\mathrm{C}(15)$	137.1(4)	137.4(5)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(16)$	130.9(4)	130.0(5)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	136.9(4)	137.6(5)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	130.5(4)	129.6(5)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	137.3(4)	137.8(5)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	135.2(4)	135.3(5)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	134.6(4)	134.4(5)
$\phi^{\text {b }}$	1.2	6.1

[^1]

Fig. 4. ORTEP representation of 3 with thermal ellipsoids drawn at 30% probability level and atom numbering scheme.

Fig. 5. pluto view of $\mathbf{3}$ in the $\mathrm{Cl}(1)-\mathrm{Cl}(2)$ direction.
and $\left.\left[\eta^{5}-\mathrm{C}_{5} \mathrm{Bn}_{5}\right) \mathrm{TiCl}(\mu-\mathrm{Cl})\right]_{2}(\mathrm{Bn}=$ benzyl; 3.374(2) $\AA)$ complexes [21]. An example of this structure type is known from lanthanide chemistry: the crystal structure of $\left[\mathrm{COT}^{\prime \prime} \mathrm{Sc}(\mu-\mathrm{Cl})\right]_{2}(\mathrm{THF})$ resembles that of 3 in all structural details [10].

The exploitation of $\mathbf{2}$ and $\mathbf{3}$ as starting materials for syntheses of titanium(II) complexes is under way.

Acknowledgements

This work was supported by the Grant Agency of the Czech Republic (grant no. 203/96/0948), and by the Volkswagen Stiftung. The Grant Agency of the Czech Republic (grant no. 203/96/0111) also sponsored access to the Cambridge Structure Data Base.

References

[1] (a) N.C. Burton, F.G.N. Cloke, P.B. Hitchcock, H.C. de Lemos, A.A. Sameh, J. Chem. Soc. Chem. Commun. (1989) 1462. (b)
N.C. Burton, F.G.N. Cloke, S.C.P. Joseph, H. Karamallakis, A.A. Sameh, J. Organomet. Chem. 462 (1993) 39. (c) U. Killiman, R. Herbst-Irmer, D. Stalke, F.T. Edelmann, Angew. Chem. Int. Ed. Engl. 33 (1994) 1618. (d) P. Poremba, H.-G. Schmidt, M. Noltemeyer, F.T. Edelmann, Organometallics 17 (1998) 986.
[2] Recent reviews: (a) F.G.N. Cloke, in: E.W. Abel, F.G.A. Stone, G. Wilkinson (Eds.), Comprehensive Organometallic Chemistry II, vol. 4, Pergamon, Oxford, 1995, Ch. 13. (b) F.T. Edelmann, in: E.W. Abel, F.G.A. Stone, G. Wilkinson (Eds.), Comprehensive Organometallic Chemistry II, vol. 4, Pergamon, Oxford, 1995, Ch. 2.
[3] (a) F.G.N. Cloke, J.C. Green, P.B. Hitchcock, S.C.P. Joseph, P. Mountford, N. Kaltsoyannis, A. McCamley, J. Chem. Soc. Dalton Trans. (1994) 2867. (b) P. Berno, C. Floriani, A. ChiesiVilla, C. Rizzoli, J. Chem. Soc. Dalton Trans. (1991) 3085.
[4] (a) H. Breil, G. Wilke, Angew. Chem. Int. Ed. Engl. 5 (1966) 898. (b) H. Dietrich, M. Soltwisch, Angew. Chem. Int. Ed. Engl. 8 (1969) 765. (c) J. Schwartz, J.E. Sadler, J. Chem. Soc. Chem. Commun. (1973) 172. (d) L. Hocks, R. Hubin, J. Goffart, J. Organomet. Chem. 104 (1976) 199. (e) D.M. Rogers, S.R. Wilson, G.S. Girolami, Organometallics 10 (1991) 2419. (f) H.-J. Kablitz, G. Wilke, J. Organomet. Chem. 51 (1973) 241. (g) H.-J. Kablitz, R. Kallweit, G. Wilke, J. Organomet. Chem. 44 (1972) C49. (h) H. Lehmkuhl, S. Kintopf, K. Mehler, J. Organomet. Chem. 46 (1972) C1.
[5] P. Berno, C. Floriani, A. Chiesi-Villa, C. Rizzoli, J. Chem. Soc. Dalton Trans. (1991) 3093.
[6] (a) S.C.P. Joseph, F.G.N. Cloke, C.J. Cardin, P.B. Hitchcock, Organometallics 14 (1995) 3566. (b) F.G.N. Cloke, P.B. Hitchcock, S.C.P. Joseph, J. Chem. Soc. Chem. Commun. (1994) 1207.
[7] H.R. van der Wal, F. Overzet, H.O. van Oven, J.L. de Boer, H.J. de Liefde-Meijer, F. Jellinek, J. Organomet. Chem. 92 (1975) 329.
[8] H.K. Hofstee, C.J. Groeneboom, H.O. van Oven, H.J. de Liefde-Meijer, J. Organomet. Chem. 85 (1975) 193.
[9] M. Horáček, J. Hiller, U. Thewalt, P. Stěpnička, K. Mach, J. Organomet. Chem. 571 (1998) 77.
[10] N.C. Burton, F.G.N. Cloke, P.B. Hitchcock, H.C. de Lemos, A.A. Sameh, J. Chem. Soc. Chem. Commun. (1989) 1462.
[11] H. Antropiusová, A. Dosedlová, V. Hanuš, K. Mach, Transit. Met. Chem. 6 (1981) 90.
[12] G.M. Sheldrick, Z. Dauter, K.S. Wilson, H. Hope, L.C. Sieker, Acta Crystallogr. Ser. D 49 (1993) 18.
[13] G.M. Sheldrick, SHELXL-93, Program for crystal structure refinement, University of Göttingen, Germany, 1993.
[14] (a) E. Samuel, G. Labauze, D. Vivien, J. Chem. Soc. Dalton Trans. (1979) 956. (b) E. Samuel, G. Labauze, D. Vivien, J. Chem. Soc. Dalton Trans. (1981) 2353.
[15] E. Samuel, J.F. Harrod, D. Gourier, Y. Dromzee, F. Robert, Y. Jeannin, Inorg. Chem. 31 (1992) 3252.
[16] K. Mach, V. Varga, G. Schmid, J. Hiller, U. Thewalt, Collect. Czech. Chem. Commun. 61 (1996) 1285.
[17] S. Gambarotta, C. Floriani, A. Chiesi-Villa, C. Guastini, J. Am. Chem. Soc. 105 (1983) 7295.
[18] G.J. Olthof, J. Organomet. Chem. 128 (1977) 367.
[19] J. Hiller, U. Thewalt, J. Podlaha, V. Hanuš, K. Mach, Collect. Czech. Chem. Commun. 62 (1997) 1551.
[20] R. Jungst, D. Sekutowski, J. Davies, M. Luly, G. Stucky, Inorg. Chem. 16 (1977) 1645.
[21] G. Schmid, U. Thewalt, P. Sedmera, V. Hanuš, K. Mach, Collect. Czech. Chem. Commun. 63 (1998) 636.

[^0]: * Corresponding author. Tel.: + 420-858-5367; fax: $+420-858$ 2307.

 E-mail address: mach@jh-inst.cas.cz (K. Mach)

[^1]: ${ }^{\text {a }}$ Estimated S.D. appropriate to $\mathrm{Ti}-\mathrm{C}$ or $\mathrm{C}-\mathrm{C}$ bonds.
 ${ }^{\mathrm{b}}$ The angle between the least-squares planes of the $\mathrm{COT}^{\prime \prime}$ rings.

